
Control Structures and Program Design

Program Design Process

1. Clearly state the problem that you are trying to solve.

2. Define the inputs required by the program and the outputs to be produced by the

program.

3. Design the algorithm that you intend to implement in the program.

4. Turn the algorithm into FORTRAN statements.

5. Test the FORTRAN program.

Follow the steps of the program-design process to produce reliable, understandable

FORTRAN programs.

Flowcharts

 Flowcharts are a way to describe algorithms graphically. In a flowchart, different

graphical symbols represent the different operations in the algorithm and our standard

constructs (standard forms used to describe algorithms) are made up of collections of one

or more of these symbols.

Control Constructs: Branches

 Branches are FORTRAN statements that permit us to select and execute specific

sections of code (called blocks) while skipping other sections of code. They are variations

of the IF statement, plus the SELECT CASE.

The Block IF construct

 This construct specifies that a block of code will be executed if and only if a

certain logical expression is true. Its General form is

 IF (logical_expr)then

 Statement 1

 Statement 2 Block 1

 ….

 END IF

If the logical expression is true, the program executes the statements in the block between

the IF and END IF statements. If the logical expression is false, then the program skips

all the statements in the block between the IF and END IF statements and executes the

next statement after the END IF.

The Else and ELSE IF clauses

 The Block IF construct with an ELSE clause and an ELSE IF clause has this

form:

 IF (logical_expr_1) then

 Statement 1

 Statement 2 Block 1

 ….

 ELSE IF (logical_expr_2) then

 Statement 1

 Statement 2 Block 2

 ….

 ELSE

 Statement 1

 Statement 2 Block 3

 ….

 END IF

If logical_expr_1 is true, then the program executes the statements in block 1 and skips to

the first executable statement following the END IF. Otherwise, the program checks for

the status of the logical_expr_2. If logical_expr_2 is true, then the program executes the

statements in block 2 and skips to the first executable statement following the END IF. If

both logical expressions are false, then the program executes the statements in Block 3.

The line containing the ELSE and ELSE IF statement should not have a statement

number.

Named Block IF constructs

 General form is

[name:] IF (logical_expr_1) then

 Statement 1

 Statement 2 Block 1

 ….

 ELSE IF (logical_expr_2) then [name]

 Statement 1

 Statement 2 Block 2

 ….

 ELSE

 Statement 1

 Statement 2 Block 3

 ….

 END IF [name]

Where name may be up to 31 alphanumeric characters long, beginning with a letter. It

should be unique within each program unit and must not be the same as any constant or

variable name within the program unit. If the name is assigned to an IF, then the same

name must appear on the associated END IF. Names are optional on the ELSE and ELSE

IF statements of the construct, but if they are used, they must be same as the name on the

IF.

Assign a name to any large and complicated IF constructs in your program to help you

keep track of the parts of the construct.

The Case Construct

 It permits a programmer to select a particular code block to execute based on the

value of the single integer, character, or logical expression. The general form is

[name:] SELECT CASE (case_expr) then

 CASE (case_selector_1) [name]

 Statement 1

 Statement 2 Block 1

 ….

 CASE (case_selector_2) then [name]

 Statement 1

 Statement 2 Block 2

 ….

 …..

 CASE DEFAULT [name]

 Statement 1

 Statement 2 Block n

 ….

 END SELECT [name]

If the value of the case_expr is in the range of values included in case_selector_1,

then the first code block will be executed. Similarly, if the value of case_expr is in the

range of values included in case_selector_2, then the second code block will be executed.

The same idea applies for any other cases in the construct. The default code block is

optional. If it is present, the default code block will be executed whenever the value of

case_expr is outside the range of all of the case selectors. If it is not present and the value

of case_expr is outside the range of all of the case selectors, then none of the code blocks

will be executed.

 If the name assigned to a SELECT CASE statement, then the same name must

appear on the associated END SELECT. Names are optional on the CASE statements of

the construct, but if they are used, they must be the same as the name on the SELECT

CASE statement.

 The case_expr may be any integer, character, or logical expression. Each case

selector must be an integer, character, or logical value or range of values. All case

selectors must be mutually exclusive: no single value can appear in more than one case

selector.

Control Constructs: Loops

 Loops permit us to execute a sequence of statements more than once. Two basic

forms of loop constructs are While loops and iterative loops (or counting loops).

While loop

 It is a block of statements that are repeated indefinitely as long as some condition

is satisfied. General form is

 Do

 …

 IF (logical_expr) Exit Code Block

 ….

 END Do

The block of statements between the DO and END DO is repeated indefinitely

until the logical_expr becomes true and the EXIT statement is executed. After the EXIT

statement is executed, control transfers to the first statement after the END DO.

 The IF statement may be located anywhere within the body of the loop, and it is

executed once each time that the loop is repeated. If the logical_expr in the IF is false,

when the statement is executed, the loop continues to execute. IF the logical_expr in the

IF is true when the statement is executed, control transfers immediately to the first

statement after the END DO.

 If the logical expression is false the first time we reach the while loop, the

statements in the loop below the IF will never be executed!

The Iterative or Counting Loop

 General form is

 Do index = istart, iend, incr

 Statement 1

 Statement 2 Body ….

 ….

 Statement n

 END Do

Index is an integer variable used as the loop counter (also known as the loop

index). The integer quantities istart, iend, and incr are the parameters of the counting

loop. They control the values of the variable index during the execution. The parameter

incr is optional. If it is missing, it is assumed to be 1.

 The counting loop construct functions as follows:

1. The Do loop parameters may be a constant, a variable, or an expression.

2. At the beginning of the execution of the DO loop, the program assigns the value

istart to control variable index. If index * incr ≤ iend * incr, the program executes

the statements within the body of the loop.

3. After the statements in the body of the loop have been executed, the control

variable is recalculated as index = index + incr. If index * incr is still less than

or equal to iend * incr, the program executes the statements within the body again.

4. Step 2 is repeated over and over as long as index * incr ≤ iend * incr. When this

condition is no longer true, execution skips to the first statement following the end

of the Do loop.

Always indent the body of a Do loop by two or more spaces to improve the readability of

the code.

Never modify the value of a Do loop index variable while inside the loop.

Never modify the control values of a Do loop (istart, iend, incr) while inside the loop

Never depend on an index variable to retain a specific value after a Do loop completes

normally.

The CYCLE and EXIT statements

 If the CYCLE statement is executed in the body of a loop, the execution of the

body will stop and control will be returned to the top of the loop. The loop index will be

incremented, and execution will resume again if the index has not reached its limit.

 If the EXIT statement is executed in the body of the loop, the execution of the

body will stop and control will be transferred to the first executable statement after the

loop.

Examples:

(1) PROGRAM test_cycle

 INTEGER :: i

 Do i = 1,5

 IF(i == 3) CYCLE

 Write(*,*) i

 END DO

 Write(*,*) ‘End of Loop!’

 END PROGRAM

(2)

 PROGRAM test_exit

 INTEGER :: i

 Do i = 1,5

 IF(i == 3) EXIT

 Write(*,*) i

 END DO

 Write(*,*) ‘End of Loop!’

 END PROGRAM

Named Loops

While loop

[name:] Do

 Statement1

 Statement 2

 …

 IF (logical_expr) CYCLE [name]

 IF (logical_expr) Exit [name]

 ….

 END Do [name]

Iterative or counting loop

 [name:] Do index = istart, iend, incr

 Statement 1

 Statement 2

 …

 IF (logical_expr) CYCLE [name]

 ….

 END DO [name]

 The accidental deletion of an END DO statement in a large set of nested DO loops can

 produce a hard- to- find error. Use names on nested Do loops to avoid this problem.

 Assign names to all nested loops so that they will be easier to understand and debug.

Use independent index variables for each loop in a set of nested Do loops.

If two loops are nested, always ensure that one of them lies completely within the other.

Use loop names with CYCLE or EXIT statements in nested loops to make sure that the

statements affect the proper loop.

